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28040 Madrid, Spain 
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Abstraet. Level shift of Dirac particles under the influence of point interaction potentials 
has been determined. A Green function method is used to obtain closed expressions for 
the level shift and perturbed wavefunnions, provided that the corresponding eigenvalue 
problem without point interaction potentials can be solved exactly. Several applications 
are discussed in detail. 

1. Introduction 

Point interaction potentials (PIPS) in one space dimension are widely used to approxi- 
mate more structured and more complex short-ranged potentials. The term PIP refers 
to any arbitrary sharply peaked potential approaching the 8-function limit (a more 
rigorous definition can be found in the monograph of Albeverio et al 1988). Although 
solutions of the Schrodinger equation for PIP$ are well defined, there exist some 
ambiguities regarding the definition of such potentials for the Dirac equation in one 
space dimension (Fairbaim et al 1973, Sutherland and Mattis 1981). The origin of this 
arbitrariness has been clarified recently (McKellar and Stephenson 1987, Calkin et al 
1988), and it is related to the fact that the Dirac equation is linear in momentum rather 
than quadratic. In addition, Coutinho and Nogami (1990) have proved that PIPS cannot 
bc dcfi~cd fg: the Dkac eqna!ion in ?WO and three space dimensions. 

In recent papers, bound and scattering states and confining properties of isolated 
pips have been studied in detail (Dominguez-Adame and Mac5 1989a, Maci6 and 
Dominguez-Adame 1991). We are naturally interested in the generalization of previous 
works to include the possible existence of non-singular potentials. This is not a trivial 
task since we must overcome the ambiguities concerning the relativistic PIP mentioned 
above. The aim of this work is to find solutions of the Dirac equation for interactions 
involving PIR, whenever the corresponding eigenvalue problem without PIPS is solved 
exactly. A Green function method is used to compute the effects of PIPS on the 
unperturbed eigenvalues. We will show that there exists an exact (and in general) 
transcendental equation which determines energy levels in a unique way. 

1. Tie eiiecis oi poini inieraciion poientinis 

The Dirac equation in one space dimension for steady states can be written as ( h  = c = 1) 

[ - i a g + p m  - E  + u ( x )  + ( u + p s ) F ( x )  #(x) = 0 1 (1) 
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where a and p are 2 x 2  Hermitian, traceless matrices with square unity such that 
ap+pa=O, acting upon the two-component wavefunction JI. Here U(x) is any 
non-singular potential for which the Dirac equation can be solved; U and s denote the 
vector (the time component of a Lorentz vector) and scalar coupling constants, 
respectively. F(x)  is a positive, sharply peaked function at x,, satisfying the limiting 
condition 
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X0+E 

F(x) dx = 1 Jx0-= 
E being a small positive parameter. By means of a space translation we can set xo = 0 
without losing generality. The appropriate boundary condition around the point where 
the PIP is located reads (McKellar and Stephenson 1987) 

W - )  (2) +(o+) = e - i a ( u + O s )  

which becomes independent of how the &function limit is taken. 
Solutions of ( I )  may be written as 

m 

+(x) = - dx’ G(x, x’; E)(u+~s)F(x’)+(x’)  (3 )  J-, 

[ :  1 
where the Green function for the unperturbed problem is a 2 x 2 matrix satisfying the 
inhomogeneous differential equation 

-ia-+pm - E +  U(x) G(x, x’; E) = 12S(x-x’) (4) 

subject to suitable boundary conditions. J, stands for the 2 x 2  unity matrix. Instead 
of solving (4), the Green function can also be obtained by explicit summation over 
unperturbed eigenstates, which are solutions of ( I )  for U = s = 0. The relativistic Green 
function exhibits a jump discontinuity on the line x=x’ ,  in contrast to the non- 
relativistic case. The value of the jump is obtained by integration of (4) in the vicinity 
of this line. The result is 

( 5 )  
The integral appearing in (3) is not well defined as F(x)+  S(x) at the outset. The 

reason comes from the fact that +(x) shows a discontinuity at x = 0 to account for the 
singularity of the potential (recall that the Dirac equation is linear in the spatial 
derivative), and the product O(x)8(x) is ill defined in a strict distribution theory sense, 
O(x) being the Heaviside step function, as pointed out by McKellar and Stephenson 
(1987). The situation is even worse considering the limit x -* 0 on both sides of (2). 
because G(x, x‘; E)  is also discontinuous at x = x’= 0. To overcome these difficulties, 
we solve the integral equation (3) for any sharply peaked function F(x), and then 
take the 8-function limit. 

According to the definition of pips, F(x)  vanishes for / X I >  E. Therefore, using the 
Dirac equation ( l ) ,  one finds that the integral equation (3) is written, after integration 
by parts, as follows: 
$(XI = -i[G(x, x’; E)aJI(x’)]Ye 

G(x+, x; E)  - G(x-, x; E)  = ia. 

dx’ ~ ( x ,  x’; E ) [ p m  - E  + u(x‘)I+(x’) 

+ i  j:z d x ’ ( 5  G(x, x‘; E) (6)  
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The second term of the RHS vanishes in the limit E +O, provided that U ( x )  is not 
singular. The third term also vanishes for 1x1 > E as E + 0 because G(x, x’; E) is a 
continuous function for x # x’, so that its derivative is non-singular outside the line 
x = x’. Hence the solution of (1) is found to be 

+(x)= -iG(x,O; E)a[$(O+)-@(O-)I IXl’O (7) 

where @ ( O + )  and + ( O - )  are related through (2). Therefore, we have obtained a closed 
form for the perturbed wavefunction. Notice that this result becomes independent of 
the exact shape of the function F ( x ) ,  so that arbitrariness in defining relativistic PIPS 
is avoided. 

Taking the limits x+O- and x+Ot in (7) and making use of (2) we obtain two 
consistency equations, namely 

det[ 1 + i G(O-, 0;  E )a (e-im(”+@’) - 1 )] = 0 ( s a )  

and 

det[ 1 - iG(O+, 0; E) (I (ei*(”+”) - 1 )I = 0. (8b)  

Actually both conditions are just the same because of equation ( 5 ) ,  as can easily be 
shown. Equation ( s a )  or (86) determines the energy levels of the Dirac particle in a 
closed form, as long as the Green function for the unperturbed potential is known. 
Once the energy levels have been determined, the corresponding wavefunction is found 
by substitution of the appropriate value of E into (7). It should be emphasized that 
equations (7) and (8) are independent of the particular representation of the matrices 
(I and 8. 

3. Results 

To illustrate the method introduced above, we study three examples corresponding to 
different choices of the potential U ( x )  in (1). In order to solve (8), we must specify 
a particular representation for the Dirac matrices. We set a = ux and 8 = ux, the v 
being the 2 x 2 Pauli matrices. 

3.1. Bound states of the isolated PIP 

Setting U ( x )  = 0 we can use our method to find the bound energy levels of a Dirac 
particle interacting with an isolated PIP. The Green function for a free Dirac particle 
becomes ( E 2 <  m2)  

( b X q  sgn(x -x’) + u p  + E )  (9) qx, E )  =Le-+,l 
2q 

where q = ( m 2 - E 2 ) I I 2  is real for bound states. Using either (8a )  or (86) we obtain 

- q = ( E u + m s )  tan( u2-  s2)1’2/(u2-s2)’/2. (10) 

This result agrees with that found by Dominguez-Adame and MaciA (1989a) in dealing 
with mixed (vector plus scalar) PIPS. 
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3.2. Relativistic Kronig-Penney model 

The dynamics of Dirac electrons in a periodic array of &function potentials has been 
studied by several authors (Dominguez-Adame 1987, and references therein). Now we 
proceed to apply our method to this problem. The Dirac equation for such electrons 
is obtained from (1) setting U ( x )  = 0 and replacing 
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m 

F ( x ) +  F ( x - n L )  (11) 
n=-m 

L being the lattice period. The Bloch theorem ensures that the wavefunction is of 
the form 

m m  

+ ( X I = -  x dx'  G(x, x '+nL;  E ) ( u + p s ) F ( x ' )  eiXnL +(x ' )  (12) 

where k is the crystal momentum. Equation (12) for a periodic arrangement of pips is 
the analogue of (3) for a single PIP. Therefore, we can apply equations (8) but replacing 

G(O*, 0; E ) +  1 G(O*, nL; E )  eiknL. (13) 

Without loss of generality we consider E2>  m2. Hence the free-particle Green function 
becomes 

n = - m  L 
m 

n=-m 

(14) 
1 

G(x,x'; E)=-e'71"-"'l (uXv sgn(x-x') +uzm + E )  
21) 

where q = ( E z - m 2 ) ' i 2 .  After performing the summation of (13), provided that 1) has 
a small positive imaginary part to ensure convergence, one gets from (8) the following 
dispersion relation: 

sin(u2-s2)Ii2 sin V L  . (15) 
1) cos k L = c o s ( ~ ~ - s ~ ) " ~ c o s  ~ L + ( E u + m s )  ("2 - s 2 ) l / 2  

In the particular case of pure vector pips (U # 0, s = 0). equation (IS) reduces .to the 
dispersion relation obtained by Dominguez-Adame (1989) using the transfer matrix 
method. 

3.3. Singular Dirac oscillator 

The spectroscopy of singular harmonic oscillators are of interest in quark physics at 
small distances (Avakian et a/ 1987). Dominguez-Adame and Macih (1989b) have 
studied the effects of scalar PIPS on the energy levels of the relativistic Ravndal oscillator 
(Ravndall982). In a recent paper, Moshinsky and Szczepaniak (1989) have considered 
an interesting interaction, in an attempt to describe a relativistic Dirac oscillator by 
means of an equation linear in both coordinates and momenta. A I D  version of the 
Dirac oscillator is obtained replacing m by m + imwax in the free-particle Hamiltonian, 
o being the frequency (Dominguez-Adame and Gonzilez 1990). To study the spectros- 
copy of the singular Dirac oscillator we choose U ( x )  =imwpax in equation (1). The 
matrix elements of the Green function 

G++(x ,  x'; E )  G++(x, x'; E )  
G _ + ( x ,  x'; E )  G__(x, x ' ;  E )  

G ( x ,  x'; E )  = 
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for the ID Dirac oscillator are given in the standard representation by (Domhguez. 
Adame 1991) 

where 5=(2mo) l / ’ x ,  A,=(E2-m2) /2mo+f- f ,  and C,(C<) is the largest (smallest) 
value of (&e).  Here D(A, I) denotes the parabolic cylinder functions. Using equations 
(8) and the well known properties of D(h, z )  we obtain after a little algebra 

- tan(v2- s ’ ) ~ / ~ / ( u ~ - s ~ ) ~ / ~  = [(x -x-’)u+ ( x + x - ’ ) s ] - ’  (18) 

where 

E + m  r(-(E2-m’)/4mw) 
2 6  r(;- (E’ - m2)/4mo)’ 

, y = , y ( E ) = -  

This transcendental equation determines the energy levels of the singular Dirac oscil- 
lator, and has to be solved numerically. Unlike the non-relativistic case (Avakian et 
al 1987), the presence of PIPS changes not only the even harmonic-oscillator levels but 
also the odd ones. 

4. Conclusions 

We have proved that the effects of relativistic point interaction potentials can be exactly 
evaluated using a Green function technique. Our method becomes independent of how 
the 8-function limit is taken, so ambiguities in defining such potentials are overcome. 
Although we have performed a I D  treatment, this method can be extended to compute 
the effects of relativistic spherically symmetric 8-function potentials (Dittrich et al 
1989, Dominguez-Adame 1990) on energy levels of 3~ potentials. In particular, this 
realization will provide an alternative way of studying the eigenvalues of the Coulomb 
potential with relativistic spherically symmetric 8-function potentials (Dittrich et al 
1991). 
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